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Abstract—A technique for incorporating past coherent 

processing interval (CPI) radar data into knowledge-aided 
space-time adaptive processing (STAP) is described.  The 
technique employs an earth-based clutter reflectivity map 
to provide improved knowledge of clutter statistics in 
nonhomogeneous terrain environments.  The map is 
utilized to calculate predicted, current CPI covariance 
matrices as a function of range.  Using the KASSPER Data 
Set, predicted clutter statistics are compared to measured 
statistics to verify the accuracy of the approach.  Robust 
STAP weight vectors are calculated by combining the 
predicted covariance estimates with standard single CPI 
estimates using a published knowledge-aided pre-
whitening algorithm.  Target detection performance is also 
evaluated on the KASSPER Data Set and compared to 
that of standard STAP processing.  Several performance 
metrics are calculated, including signal-to-interference 
plus noise (SINR) loss, target detections and false alarms, 
receiver operating characteristic (ROC) curves, and 
tracking performance.  The results show a significant 
benefit to using knowledge-aided processing based on a 
past CPI reflectivity map. 

I. INTRODUCTION 
HE lack of training data in nonhomogeneous 
clutter environments can cause severe 

degradation in the performance of space-time 
adaptive processing (STAP) algorithms (see [1,2] 
and references contained therein).   Under the 
Defense Advanced Research Projects Agency 
(DARPA) Knowledge Aided Sensor Signal 
Processing and Expert Reasoning (KASSPER) 
program, ALPHATECH has been studying 
techniques to improve STAP performance in such 
environments.    

Surveillance radars typically perform STAP 
processing on a limited number of pulses of data 
which is referred to as a coherent processing 
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interval (CPI).  Covariance estimation for STAP is 
usually performed by averaging over range-gates on 
a single CPI.  Due to varying terrain conditions, 
however, this may result in poor estimates due to an 
inadequate amount of training data matching the 
range-gate under test.  Two possible consequences 
of this are undernulling or overnulling of clutter.  
Undernulling may occur if the test range-gate 
contains strong clutter due to, say, steeply sloped 
terrain, while the training window surrounding the 
test cell contains less severe clutter.  This may lead 
to an excessive number of false alarms or, if the 
threshold is increased to reduce false alarms, loss of 
target detections.  Overnulling of clutter may occur 
when the training window contains steeply sloped 
terrain or windblown clutter that is not present in 
the target range cell.  Overnulling leads to the loss 
of target detections.   

The motivation for the study described here is 
the fact that in surveillance radar scenarios a given 
area on the ground may contribute to clutter returns 
over multiple CPIs.  The data-cubes from these 
CPIs contain potential training data for estimating 
covariance matrices which, if exploited properly, 
could reduce the degradation caused by range-
varying terrain.  Additionally, a priori information 
about the surveillance area in a given mission can 
be obtained through databases.  Digital terrain 
elevation data (DTED) allows precise registration 
of ground scatterer locations in radar-centered 
coordinates on different CPIs.  In combination with 
land use/land cover information, DTED can also be 
used to calculate clutter statistics based on pre-
stored clutter models.  These models, however, may 
have errors due to inaccurate clutter models, out-of-
date databases, etc.  Combining such predictions 
with local clutter estimates derived from past CPI 
data may provide the best solution for reducing the 
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amount of over/under-nulling and maximizing 
knowledge-aided STAP performance. 

   Due to the fact that the platform geometry is 
changing from CPI to CPI, simply averaging outer 
products of complex returns from additional CPI 
data-cubes to augment standard covariance 
estimation is not effective.  The changing platform 
geometry means that the range-gate footprints on 
the ground are also changing with CPI.  In addition 
to this, the Doppler frequency of a given point on 
the ground will be changing with CPI.  Thus, in 
order to exploit the past CPI data, a STAP 
algorithm must be able to 1) extract information on 
clutter statistics as a function of ground location and 
2) correct for the differences in the range and 
Doppler locations of clutter scatterers on different 
CPIs.   

Even if the range/Doppler variation of the 
ground scatterers were perfectly known, there may 
also be differences in clutter returns on different 
CPIs due to changing antenna element gains on the 
scatterers and aspect-dependent reflectivity.   Due 
to such effects, there will inevitably be errors in the 
knowledge of clutter statistics gained from past CPI 
data-cubes.  The algorithm that is developed needs 
to be robust against these errors, and may need to 
incorporate an appropriate combination of 
covariance estimates that are derived on the current 
CPI using a conventional range-averaging 
procedure with estimates based on past CPI data.       

We describe in section II the approach that was 
developed for accomplishing the objectives 
described above.  In section III, we show the results 
of processing on the KASSPER Data Set 2 [3], 
which simulates a radar clutter environment under 
“real-world” conditions. The results obtained 
indicate that significant improvements in STAP 
performance may indeed be achieved by utilizing 
past CPI data. 

II. DESCRIPTION OF THE ALGORITHM FOR 
INCORPORATING PAST CPI DATA 

As mentioned in the Introduction, in order to 
exploit past CPI data in STAP processing one must 
correct for CPI-to-CPI differences in range and 
Doppler frequency of the clutter scatterers on the 
ground.  The approach taken to accomplish this was 

to form an earth-based clutter reflectivity map.  This 
map contains information on clutter reflectivity 
(clutter power per unit area), averaged over a spatial 
area on the ground and over multiple CPIs.  The 
registration of data from different CPIs was 
produced by converting the locations of the clutter 
scatterers in each CPI from radar-centered to earth-
centered coordinates.  To predict clutter statistics on 
the current CPI, the reflectivities of the scatterers in 
each range-gate were retrieved by again converting 
to earth-centered coordinates and accessing the 
appropriate cells of the reflectivity map.  In order to 
produce robust STAP performance in the presence 
of errors, a recently published knowledge-aided pre-
whitening technique was employed [4]. 

In this section we describe the three main 
aspects of the algorithm as follows.  We first 
describe in sub-section A the steps required for the 
formation of the clutter reflectivity map.  In sub-
section B we describe how the map was used to 
derive clutter statistics on the current CPI.  The 
statistics were verified by comparing measured and 
predicted range-Doppler spectra of portions of the 
KASSPER Data Set.  Finally, in sub-section C we 
describe the knowledge-aided pre-whitening 
technique that was used to combine the covariance 
estimates derived from the clutter reflectivity map 
with the training data from the current CPI.  This 
combination results in a STAP weight vector that is 
robust to errors in the knowledge of the clutter 
statistics derived from the past CPI data. 

A. Formation of a clutter reflectivity map 
The first aspect of the algorithm for 

incorporating past CPI data was to form a clutter 
reflectivity map based on multiple CPI data-cubes. 
This process is illustrated in Figure 1.  There are 
four basic steps involved in forming this map: 

1. Define clutter scatterers in each processed 
range-gate of each past CPI data-cube 

2. Calculate the scatterer locations in an earth-
based coordinate system (i.e. geo-register the 
scatterers)  

3. Estimate the amplitude of  each of the 
scatterers in the received radar returns 

4. Normalize the scatterer amplitudes by their 
area on the ground, and form an average 
earth-based clutter reflectivity map 

These steps are described individually in more 
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detail below.  
 

 
Figure 1 Illustration of procedure for forming an 
earth-based clutter reflectivity map 

A.1   Definition of clutter scatterers 
The first step in the algorithm was to define a 

discrete set of ground scatterers in each range-gate 
of each past CPI data-cube.  The contributions of 
different scatterers on the ground to a radar return 
in a given range-gate of a given CPI are 
distinguished by their spatial response across the 
receive antenna array elements and their temporal 
response across the pulses of the CPI.  To obtain 
accurate representation of the clutter statistics, the 
discrete scatterers that are assumed in each range-
gate should be spaced so that the changes in spatial 
angle and Doppler frequency do not exceed the 
corresponding spatial and Doppler radar resolution 
respectively.  A finer spacing is possible, provided 
that the algorithm used to estimate the scattering 
strengths can accurately determine the variation of 
scattering strength with ground location 
(essentially, such an algorithm would be performing 
super-resolution estimation). 

The spatial resolution of a surveillance radar is 
limited by the antenna size, which determines the 
antenna beamwidth.  The Doppler resolution is 
given by the inverse of the time extent of the CPI 
(which is also the width of a Doppler filter if 
unweighted Fourier transform processing is 
employed).     Table I lists relevant parameters of 
the KASSPER Data Set that was processed. 

   

 
 

The antenna elements of the KASSPER Data 
Set were formed using 12 non-overlapped subarrays 
spaced by 4 wavelengths per subarray.  The 
subarrays were pre-steered to a particular direction 
on each CPI.  The azimuth and elevation angle of 
this pre-steering direction were supplied along with 

TABLE I 
RELEVANT PARAMETERS OF THE 

KASSPER DATA SET [3] 

Quantity Value 

Radar frequency 10 GHz 
Radar bandwidth 10 MHz 
Peak power 10 kW 
System losses 7 dB 
Antenna size 1.43 m (horizontal) by .285 

m (vertical) 

Transmit antenna 
pattern 

Spoiled to 10 degrees 
beamwidth 

Receive antenna 
configuration 

12 non-overlapping 
subarrays, spaced by 4 
wavelengths per subarray 

Number of pulses 
per CPI 

38 

Number of CPIs 
per dwell 

3 with  PRFs of 2081, 1800, 
and 1518 Hz 

Time separation 
of dwells 

10 seconds 

Number of dwells 
in scenario 

30 

Platform motion 150 m/s, heading west 
Crab angle 3 degrees 
Standoff range to 
targets 

Approximately 45 km 

Target clusters 3 clusters, 60 vehicles each 
Background 
traffic 

1000 vehicles  

Target motion Move along roads, speed 2-
25 m/s depending on road 
type, decelerate when 
approaching intersections 

Earth model Spherical, radius 6378388 m, 
modulated by  DTED 



 4

the data-cube for each CPI.  Each CPI contains 38 
pulses, and a dwell consisting of three consecutive 
CPIs at different pulse repetition frequencies 
(PRFs) occurs every 10 seconds.  During this time 
interval, the platform moves 1.5 km, which is 
significant relative to the 40 km standoff range to 
the targets (small changes in aspect can produce 
large changes in covariance matrices). 

The radar parameters shown in Table I lead to a 
Doppler filter width on the ground that is 
significantly smaller than the antenna beamwidth.  
At broadside, the azimuth width of a Doppler filter 
is given by 

degrees3.radians103.5

0005.381502
03.

2
3 =⋅=

⋅⋅⋅
≈

⋅⋅⋅
≈∆

−

ra TMV
λθ  

 
The antenna azimuth beamwidth, on the other hand 
is given approximately by 
 
 degrees 2.1radians 021.43.1/03./ ===Dλ  
 
Thus the Doppler filter spacing is about ¼ of the 
antenna beamwidth (as one moves off broadside, 
the Doppler filter width and antenna beamwidth 
both increase by a factor of steerθcos/1 ).  
Consequently, defining the scatterers in each range-
gate by their Doppler frequency, and spacing them 
apart by no more than one Doppler filter should 
result in satisfying both the spatial and temporal 
resolution requirements. 

Given the considerations discussed above, the 
scatterers in each range-gate of each past CPI data-
cube were defined by specifying 1) their range from 
the radar platform and 2) their Doppler frequency.  
The range of each scatterer in a given range-gate 
was defined to be the slant range at the center of the 
range-gate.  The bandwidth of the system shown in 
Table I leads to a range resolution of 15 m, which is 
much smaller than the size of the antenna beams or 
Doppler filters on the ground.  Thus, one scatterer 
per range cell should suffice to give accurate clutter 
statistics. 

  The Doppler frequencies of the scatterers 
were defined to span multiple Doppler ambiguities 
about the Doppler frequency at the radar look 

direction.  For the KASSPER Data Set, three 
Doppler ambiguities were modeled in order to make 
sure that all mainlobe and near-sidelobe clutter was 
represented.  The Doppler spacing between adjacent 
scatterers was taken to be one Doppler filter. Figure 
2 below shows the Doppler frequencies and azimuth 
angles of the scatterers that were defined in one 
range-gate of a past CPI data-cube.  These lie along 
the so-called Doppler-angle “clutter ridge” 
(actually, the azimuth angles of the scatterers were 
calculated after the geo-registration step discussed 
below). 

 
Figure 2  Doppler-angle locations of clutter 
scatterers in one range-gate of a past CPI data-
cube 

 
A.2  Geo-registration of scatterer locations 

Once the slant range and Doppler frequencies 
of the possible ground scatterers were defined, the 
next step was to compute earth-based coordinates 
for the scatterers.  The ground location of a scatterer 
is determined by the intersection of three surfaces: 

a)  a range sphere centered on the platform 
location, having a radius equal to the slant range 

sR of the scatterer 
b)  a cone about the platform velocity vector, 

corresponding to the Doppler frequency of the 
scatterer.  Neglecting internal clutter motion, the 
cosine of the cone angle relative to the platform 
velocity vector is given by 
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where λ  is the radar wavelength, dopf  the scatterer 
Doppler frequency, and pV  the radar platform 
speed. 

c)  the earth’s surface.  This is defined by digital 
terrain elevation data (DTED).  A level 1 database 
indexed by latitude and longitude having a posting 
of 90 m was employed (note from Table I that in the 
KASSPER Data Set these height variations are 
assumed to occur on a reference spherical earth). 

The height of the earth’s surface at a scatterer 
location depends on its latitude and longitude, and 
these are unknown.  For the moment, assume that 
the height h of the terrain above the reference 
spherical earth model of radius eR is known.  Let the 
unknown position of the scatterer in earth-centered 
coordinates be denoted by scrr .  The platform 
position vector is known and is denoted by prv .   
The scatterer position is then determined by the 
following three equations: 
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The above equations constitute a set of three 

equations and three unknowns, which are the three 
components of the scatterer position vector scrr .  The 
method that was used to solve these equations to 
determine scrr  is detailed in appendix A. 
   We accounted for the fact that the height h is 
unknown by employing the following iterative 
procedure: 

1. Intitialize the scatterer height h above the 
earth using the DTED derived height for a 
reference lat/lon in the surveillance volume 

2. Calculate the intersection of the range 
sphere, Doppler cone, and earth sphere in 
earth-centered coordinates by solving Eqs. 
(2) for the three components of scrr  

3. Convert scrr to latitude and longitude using 
spherical earth geometry 

4. Fetch the value of the DTED-derived height 
at the latitude and longitude determined in 3. 

5. Repeat steps 2-4 until the difference in 
height is small. 

The above procedure results in earth-based geodetic 
coordinates for each of the clutter scatterers defined 
in A.1 for each past CPI data-cube.      

 
A.3  Estimation of scatterer strengths 

 Once the scatterer locations on the ground 
were determined, their contributions to the received 
radar amplitudes were estimated.  This first required 
defining the steering vector to each scatterer.  A 
steering vector describes the space-time response of 
a unit amplitude scatterer.  Mathematically, it is a 
direct product of the spatial response across the 
antenna elements and the temporal response across 
the pulses in the CPI.  Letting N denote the number 
of antenna elements, and M  the number of pulses in 
a CPI, the steering vector to each of the scatterers 
will be given by a NM by 1 column vector.  The 
elements of the vector are a function of the look 
direction to the scatterer and its Doppler frequency.  
The effects of atmospheric refraction on the look 
direction were taken into account using an effective 
earth model.  The precise form of the elements of 
the steering vectors that was employed is given in 
Appendix B.   

For the present discussion, let the steering 
vector to the scatterer i in a given range-gate of a 
given data-cube be denoted by isr .  Also let xr  be 
the measured data vector in the range-gate.  We 
desire an approximation of xr  in the form 

 
i

i
i sx rr
⋅= ∑α  (3) 

 
The complex return strengths iα  were selected in 
order to minimize the squared error  
 

2|| i
i

i sx rr
⋅−= ∑αε  (4) 

 
The solution of this problem can be shown to be 
 

∑ ⋅= −

j

H
jiji xsS rr][ 1α , (5) 
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where the matrix S is defined by the elements 
 

j
H

iij ssS rr
=][  (6) 

 
In general, the matrix S will not be diagonal, due to 
the fact that the steering vectors will not be 
orthogonal.  This is true even if the scatterer 
spacing is selected to be one Doppler filter, due to 
the fact that multiple Doppler ambiguities are 
modeled. 

 The complex numbers iα   represent the 
return strengths of the scatterers in a given range-
gate of a given data-cube.  Each of the scatterers 
represents clutter in one range-Doppler cell, which 
in turn corresponds to a particular area on the 
ground.  The procedure described here is repeated 
for all the processed range-gates in each of the CPI 
data-cubes used to form the reflectivity map.   
 
A.4  Normalization and formation of reflectivity 
map 

Since the complex clutter estimates obtained in 
A.3 were derived from measured data, they 
implicitly include all the effects of parameters 
appearing in the radar range equation (i.e. antenna 
patterns, clutter radar cross section, etc.).  Because 
the areas of range-Doppler resolution cells on the 
ground will be changing from CPI to CPI, it is 
important to build the clutter reflectivity map using 
reflectivities rather than complex clutter strengths 
(the cell areas are different on each CPI due to the 
different PRFs, as well as the changing geometry as 
the platform moves).  The clutter reflectivity is 
defined here as the clutter power 2||α  of a given 
scatterer divided by the area on the ground 
represented by that scatterer.   

The cell area of each scatterer on the ground 
was determined using the earth-centered Cartesian 
coordinates ( scrr ) of the scatterers that are adjacent 
in range and Doppler.  Vectors connecting these 
adjacent scatterers define the size of the cell 
represented by the scatterer under consideration. 
Define )(i

rngrr∆ as the vector on the ground spanning 

the range dimension of scatterer i, and )(i
doprr∆ as the 

vector spanning the Doppler dimension.  The area 
of the corresponding ground cell is then given by  

 

|| )()( i
dop

i
rngi rrA rr

∆×∆=  (7)    
 

The reflectivity map was built by averaging the 
clutter reflectivity values of all the scatterers over 
multiple CPIs and range-gates lying within each of 
the latitude/longitude cells defining the map:   

∑=

ilonilat
i i

i

sc AN
ilonilat

, cellin 
lying  scatterers

2||1),(
α

ρ , (8) 

Here, scN  is the number of scatterers lying within 
the cell indexed by ilat,ilon.  The reflectivity of a 
given cell in the map is thus an average over 
scatterers in all processed range-gates and CPIs 
lying within the cell.   

The resolution of the map was selected as 200 
m, reflecting the typical size of a Doppler resolution 
cell (which is 240 m for terrain located off 
broadside at 45 km range).  While this is 
significantly larger than the 15 m range resolution, 
it allows a large number of training samples to be 
averaged within each cell of the map.  This in turn 
provides a smoothing of the map.  In addition, the 
algorithm used to estimate of scatterer strengths 
described above has a resolution that is limited by 
the Doppler cell width.  Thus, defining a cell size 
much smaller than the Doppler filter width would 
not produce a correspondingly accurate 
representation of the behavior of the clutter 
reflectivity from cell to cell. 

Figure 3 shows a clutter reflectivity map that 
was calculated based on 10 CPIs.  The boundaries 
of the map correspond to the range boundaries of 
the CPIs that were processed.  The reflectivity map 
is seen to predict regions of very strong clutter, 
which are produced by steeply sloped terrain.  In 
addition there are areas where the reflectivity is 
much weaker which includes regions that are 
shadowed from the radar (i.e. not visible).  The 
knowledge gained from the reflectivity map allows 
these areas to be identified.  The STAP processor 
can incorporate this knowledge into the adaptive 
weight vector and reduce the magnitude of 
over/undernulling that occurs with standard range-
averaged covariance estimation. 
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Figure 3  Clutter reflectivity map formed from 
multiple CPIs of the KASSPER Data Set 

B. Prediction of current CPI clutter statistics 
Once a reflectivity map based on past CPIs is 

formed, it must then be employed to calculate 
clutter statistics for the current CPI.  The procedure 
used here was to define a grid of scatterers in each 
range-gate of the data-cube, as described in sub-
section A.1, spanning three Doppler ambiguities 
about the look direction (the only difference was 
that the spacing of the scatterers in Doppler was 
taken to be half a Doppler filter rather than one 
filter).  Registration to geodetic coordinates was 
also performed as described in sub-section A.2.  The 
steering vectors isr   and cell areas iA  of each 
scatterer were then calculated as specified in sub-
section A.3.   

The reflectivity iρ  of scatterer i of the current 
CPI data-cube was determined by using its 
calculated latitude and longitude and indexing into 
the clutter reflectivity map.  To obtain the estimated 
power ip  of scatterer i, the reflectivity was 
multiplied by the cell area iA of the scatterer.  A 
correction for the overall antenna subarray pattern 
was also applied to account for scatterers that may 
have been in the mainlobe on previous CPIs but 
have moved into the antenna sidelobes on the 
current CPI.  A covariance matrix for each range-
gate was then calculated by summing the individual 
contributions of the scatterers in the range-gate: 

 
∑ ⋅=

i

H
iiicalc sspR rr  (9) 

To test the accuracy of the algorithm, a plot of 
the mean power in each range-gate and Doppler 
filter was calculated.  This was done by employing 
a single spatial weight vector corresponding to the 
radar look direction and a bank of temporal weight 
vectors corresponding to a temporal FFT across the 
CPI.  Chebychev weighting (60 dB sidelobes) was 
applied across the pulses prior to applying the 
weight vectors in order to reduce the effects of 
Doppler sidelobes.   

Figure 4 shows measured range/Doppler 
spectra of four different CPIs that were used to form 
the reflectivity map shown in Figure 3.  The clutter 
in these plots is somewhat confined in Doppler 
(vertical dimension).  This is due to the Doppler 
extent of the area covered by the antenna 
beamwidth.  The Doppler extent of the plots is 
equal to the PRF of the corresponding CPI.  The 
Doppler interval was oversampled so that the 
number of Doppler frequencies at which the 
spectrum was evaluated was equal to two times the 
number of pulses in the CPI.  Note the strong range 
variation of the clutter (the range extent of the plots 
is 2.7 km).  This is due to the occurrence of varying 
terrain slopes and shadowing. 

Note in addition that the Doppler location of 
the clutter is different in each CPI.  Also, the shape 
of the clutter spectra is slightly different for each 
CPI.  As discussed earlier, this is due to the fact that 
the platform geometry is different on each CPI.  
Additionally, the PRFs are different on some of the 
CPIs, which causes changes in the Doppler index 
location of the clutter, as well as the magnitude of 
the clutter returns through the size of the Doppler 
filters on the ground.  The purpose of performing 
geo-registration of the scatterers and forming the 
earth-based clutter map is to correct for all these 
differences. 
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Figure 4  Measured range-Doppler spectra for 
portions of four different CPIs of the KASSPER 
Data Set 

Figure 5 compares the measured range/Doppler 
spectrum for CPI 22 with the mean spectrum 
corresponding to the covariance matrices calculated 
using the reflectivity map shown in Figure 3.  The 
main features are modeled as could be expected 
from a 200 meter resolution.  The clutter location in 
Doppler and its variation with range is correctly 
predicted, showing that the registration procedure 
was effective.  The green colored returns in the 
middle of the plots are due to near sidelobe clutter 
and are also correctly predicted. 
 

 
Figure 5  Comparison of measured range-
Doppler spectrum for CPI 22 (left) with 
prediction of clutter reflectivity map (right) 

For comparison, Figure 6 shows the mean 
Doppler spectrum of a range-averaged covariance 
(a single covariance matrix formed by averaging 

over 181 range-gates was used to obtain this figure).  
Note that forming a range-averaged covariance 
smears out the variations over the extent of the 
training window.  Upon comparison of Figs. 5 and 6 
it is seen that the calculated covariance certainly 
models the features more accurately than a single 
range-averaged covariance matrix.  The latter is 
representative of the prediction produced by the 
standard STAP training procedure.   
 

 
Figure 6  Comparison of measured range-
Doppler spectrum for CPI 22 (left) with 
prediction based on a single range-averaged 
covariance matrix (right) 

 

C. Calculation of STAP weight vector 
Due to such effects as unknown internal clutter 

motion, antenna element pattern variations, and 
aspect-dependent reflectivity, there will be errors in 
the clutter covariance matrices calculated from the 
reflectivity map.  Conventional covariance 
estimation based on current CPI data includes these 
effects to some extent.  Internal clutter motion and 
antenna pattern mismatch are implicitly included in 
the measured range-averaged covariance matrices 
derived from the current CPI data-cube.  However, 
the clutter reflectivity (and perhaps internal clutter 
motion as well) will be range varying, which leads 
to degradation of conventional STAP performance.  
What is needed is an algorithm that “fuses” the 
estimates provided by the clutter reflectivity map 
with those calculated directly from the current CPI 
data.  The desired algorithm would utilize the 
reflectivity map to reduce the errors caused by 
range-varying clutter statistics in the current CPI 
data-cube, yet be robust to effects such as antenna 
pattern mismatch and internal clutter motion. 
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To this end, we applied an algorithm that was 
presented by Bergin [4] at the 2003 Adaptive Array 
Sensor Processing (ASAP) conference.  This 
algorithm fuses a calculated covariance matrix with 
an estimated covariance to calculate a robust STAP 
weight vector.  The STAP weight vector is given by 

 
sRIRw calcdlcurr
rr 1)( −⋅+⋅+= ββκ  (10) 

 
Here currR  is the conventional covariance estimate 
derived from the current CPI data-cube, calcR  is a 
calculated covariance matrix, sr  is the target 
steering vector, lβ  is the conventional diagonal 
loading scale factor, and dβ is a “colored loading” 
scale factor.  The factor κ is an overall scalar 
multiplier.  It was also shown in [4] that the above 
STAP weight vector could also be implemented 
using a pre-whitening approach.  In this approach, 
the data vector and the diagonally loaded range-
averaged covariance estimate are pre-whitened 
using the calculated covariance matrix.   

 We applied the above algorithm for 
calculating the STAP weight vector to the 
KASSPER Data Set in a post-Doppler framework.  
In particular, an extended-factored [5] (also known 
as “adjacent bin” or “multi-bin” post-Doppler) 
algorithm was implemented.  This algorithm 
calculates a separate STAP weight vector in each 
Doppler filter.  The spatial degrees of freedom 
(DOFs) consisted of all of the 12 antenna subarrays, 
while the temporal DOFs consisted of 5 Doppler 
filters surrounding the filter under test.   

A post-Doppler approach has certain 
advantages over full DOF processing:  

1) Due to the reduced number of DOFs (60 vs. 
456 for the KASSPER Data Set), the size of the 
training range window can be reduced, thus 
providing more accurate local estimates of the 
clutter statistics.  A training window equal to three 
times the number of DOFs was employed (180 
range-gates, corresponding to a 2.7 km range extent 
for the KASSPER Data Set). 

2) A separate STAP weight vector is used in 
each Doppler filter, allowing tailoring the adaptive 
filter to the clutter present in each Doppler filter.  
This is advantageous when the clutter is strongly 

varying with Doppler (as was seen in Figures 4 and 
5)   

3) The effects of strong discretes and targets 
can be separately suppressed from the covariance 
estimates in each Doppler filter.   

 To account for internal clutter motion, the 
calculated covariance matrices shown in Eq. (9) 
were modified before Doppler processing.  
Reference [6] shows that the effect of internal 
clutter motion on the covariance matrix is to taper 
the elements of that matrix.  To model a two-sided 
exponential velocity distribution, a tapering 
function with a Lorentzian shape was applied to the 
elements of the covariance matrices calculated from 
the reflectivity map: 
 

2'','', |'|1
1

mm
RR mnnmmnnm −+

⋅→
γ

 (11) 

 
Here ',nn  are spatial element indices, while ',mm  
are temporal pulse indices.  The constant γ  was 
selected to correspond to a .17 m/s standard 
deviation of the distribution of clutter internal 
velocity.  This value was selected empirically based 
upon observations of the data correlation 
characteristics. 

 Once the covariance taper was applied to the 
calculated covariance matrices, Doppler pre-
processing for the extended-factored algorithm was 
performed.  This pre-processing defines, for each 
target Doppler frequency processed, a 60 by 456 
transformation matrix T.  The measured data vector 
and steering vectors were then transformed as 
 

sTsxTx rrrr
→→ , , (12) 

 
while the measured and calculated covariance 
matrices were transformed as 
  

HTRTR →  (13) 
(the “H” superscript means that the Hermitian 
conjugate is to be taken).   

Equation (10) was used to calculate the STAP 
weight vector for each target Doppler frequency.  
The diagonal scale factor lβ was selected to produce 
diagonal loading at the noise floor.  The colored 
loading scale factor dβ  was selected so that the 
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mean power of the calcd R⋅β  term matched that of 
the measured covariance currR .  Finally, the overall 
scale factor κ was selected so that the absolute 
square after adaptive filtering produced the adaptive 
matched filter (AMF) test statistic [7]: 

sRIRs calcdlcurr
H rr 1)(

1
−⋅+⋅+

=
ββ

κ  (14) 

   
Adaptive filtering was then applied to the post-

Doppler data vectors in each Doppler filter and in 
each range-gate using 
 

2|| xwy H rr
=  (15) 
     

The AMF statistic possesses an embedded constant 
false alarm rate (CFAR) property [7].  Therefore, 
the output amplitudes in Eq. (15) were thresholded 
directly to determine target detections and false 
alarms.  The only additional CFAR processing was 
to perform a grouping of the threshold crossings 
near known target locations.   

III. RESULTS OF PROCESSING ON THE KASSPER DATA 
SET 

Before computing actual target detection 
performance, STAP performance was first 
evaluated by calculating signal to interference plus 
noise (SINR) loss.  The SINR loss is defined by 
 

,|| 2

noiseideal
H

H

SINR GwRw
swL

⋅
= rr

rr

 (16) 

 
Here, idealR   is the ideal, exactly known clutter plus 
noise covariance and noiseG  is the ideal, noise-
limited SINR for a unit amplitude signal 
( 456== NMGnoise  for the KASSPER Data Set).  
For CPI #22, the exact covariance matrices were 
provided in each range-gate, allowing computation 
of the SINR loss factor.   

Figure 7 compares the SINR loss of a portion 
of this CPI for standard STAP processing versus 
knowledge-aided STAP processing using the 
algorithm described in section II.  The loss is shown 
as a function of Doppler index (vertical) and range-
gate (horizontal).  The target Doppler interval was 

oversampled by a factor of two, so that the number 
of Doppler indices in the vertical dimension of the 
plots is equal to twice the number of pulses in the 
CPI (i.e. is equal to 76).  The range extent is 2.7 km 
(equal to the extent of one training window).   To 
obtain the results shown in Figure 7, data-cubes 
without targets were processed in order to isolate 
the benefits on clutter suppression produced by the 
past CPI reflectivity map. 

Note from the plots that the SINR loss is 
degraded over a significant portion of the Doppler 
interval.  This portion corresponds to the Doppler 
frequency of clutter over the antenna beamwidth.  
The range/Doppler extent of these plots is in fact 
the same as in Figure 5, and the region in which 
SINR loss is degraded can be compared to the areas 
of strong clutter return in Figure 5.  Note however 
that with knowledge-aided processing the width of 
the “clutter notch” is significantly narrower in 
certain areas.  This is due to improved knowledge 
of the local clutter statistics that is gained from the 
clutter reflectivity map.   The 200 meter resolution 
of this map is much finer than the 2.7 km resolution 
of the standard training range window.  It thus 
reduces the extent of over/under-nulling caused by 
the range varying clutter environment. 

In addition to SINR loss, performance was 
evaluated by processing the data-cubes with targets 
in them and comparing threshold crossings to the 
known target range/Doppler locations.  The effects 
of strong discretes and targets on the range-
averaged covariance estimates were suppressed by 
performing separate range masking in each Doppler 
filter.  To accomplish this, a two step procedure was 
employed:  

1) Calculate the AMF statistic in each 
range/Doppler cell without any masking of the 
training data   

2) Mask range/Doppler cells whose AMF 
statistic exceeded a certain threshold (15 dB) from 
the training data.  Recompute the AMF statistic 
using the remaining training data and determine the 
resulting threshold crossings. 
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Figure 7  SINR Loss versus range (horizontal) 
and Doppler (vertical) for standard STAP 
processing (top plot) and knowledge-aided STAP 
processing (bottom plot) 

Figure 8 compares the range/Doppler locations 
of threshold crossings in a portion of CPI #67 
produced by standard STAP processing to those of 
knowledge-aided STAP (KASTAP) processing.  
The locations of known targets are shown as blue 
diamonds, while the threshold crossings are shown 
as yellow triangles.  In each case there are false 
alarms present, which are due to returns from some 
very steeply sloped terrain.  Note however that with 
KASTAP processing, there are fewer false alarms 
present and more detections at the locations of 

actual targets.  This represents a significant benefit 
to using knowledge-aided processing that could 
translate into improved tracking of time critical 
targets.   

 
 

 
Figure 8 Range-Doppler locations of threshold 
crossings in a portion of CPI #67 for standard 
STAP processing (top plot) and knowledge-aided 
STAP processing (bottom plot) 

In addition to individual examples of detections 
and false alarms, receiver operating characteristic 
(ROC) curves were generated.  These were obtained 
by varying the AMF threshold and counting the 
number of target detections and false alarms for 
each threshold.  Probability of detection was 
computed by calculating the fraction of targets 
within the range window processed that were 
detected.  A significant number of closely spaced, 
non-moving targets were actually present in the 
scenes.  Multiple targets lying within the same 
range/Doppler cell were counted as a single target.  
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Even after this was done, approximately 10% of the 
remaining targets were non-moving. 

For each threshold setting, the false alarm 
density (number of alarms per square kilometer on 
the ground) was calculated.  The range and azimuth 
extent processed corresponded to an area on the 
ground of 3 square kilometers per CPI.  Composite 
performance was obtained over 23 CPIs.  Only 
data-cubes having the 2081 Hz PRF were processed 
(if the two other CPIs with different PRFs were 
noncoherently combined on each dwell, improved 
performance could be expected).  Figure 9 shows 
the results.        

 
Figure 9 ROC curves over 23 CPIs for standard 
STAP processing (red) and knowledge-aided 
STAP processing (blue) 

  A consistent benefit in detection performance is 
seen from KASTAP processing.  For example, at a 
detection probability of 60%, the false alarm 
density decreases from about 35 alarms per square 
kilometer for standard STAP processing to 8 per 
square kilometer for KASTAP processing, about a 
factor of 4 reduction.  At a detection probability of 
40%, the false alarm density decreases by almost a 
factor of 10, from roughly 10 alarms per square 
kilometer for standard STAP to about 1 per square 
kilometer for KASTAP. If the non-movers were 
removed from the data set, the detection probability 
values obtained would be expected to increase. 

The effect of incorporating the clutter 
reflectivity map into knowledge-aided STAP 
processing on tracking performance was also 
evaluated using ALPHATECH’s multiple 
hypothesis tracking (MHT) testbed.  The KASSPER 

Data Set was again used; however only two of the 
targets from the data set were present in the 
scenario.  Figure 10 shows target detections (yellow 
triangles) truth locations (brown diamonds), and 
track locations (red squares) for standard STAP vs. 
KASTAP processing for one of the dwells on the 
testbed display.   

The yellow lines on the display represent the 
azimuth boundaries of the search region, and the 
green lines show the location of roads.  The display 
is earth-referenced (i.e. North is up and East is to 
the right).  For the dwell shown, range increases 
vertically downwards.  Note that on this dwell 
standard STAP fails to detect the near range target, 
while each of the algorithms are tracking both of the 
targets.  The standard STAP track for the near range 
target is being coasted and has been declared as off-
road, due possibly to the turn in the road or to poor 
azimuth accuracy on the previous update. 

Figure 11 shows tracking results over 23 
dwells.  Note that with KASTAP processing, the 
tracker was able to start the track sooner and there 
were fewer false alarms present.  Together with the 
SINR loss and ROC performance differences that 
were observed, these results indicate that 
incorporating past CPI data into KASTAP 
processing may produce increased track life and 
fewer false tracks in critical military scenarios. 

IV. CONCLUSION 
We have described here a technique for 

incorporating past CPI data into knowledge-aided 
STAP processing.   The algorithm corrects for 
differences between different CPI data-cubes, due 
to varying platform geometry and PRF, and forms 
an averaged earth-based clutter reflectivity map.  
The reflectivity map is then used to predict clutter 
statistics on the current CPI.  Using the KASSPER 
Data Set, a sample reflectivity map was formed 
from multiple CPIs and shown to produce a range 
and Doppler variation that was in agreement with 
the measured clutter spectrum on a subsequent CPI. 
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 Figure 10a  Detections, truth, and tracks for 
standard STAP processing for one CPI shown on 
ALPHATECH’s MHT testbed display (DM++)  

 
Figure 10b  Detections and truth for KASTAP 
processing for one CPI shown on 
ALPHATECH’s MHT testbed display (DM++). 

Because past CPIs contain additional local 
training data, the covariance estimates calculated 
using the clutter map can improve the performance 
of standard STAP algorithms that employ range-
averaged covariance matrices. A published 
technique for fusing calculated and conventional 
covariance estimates was used to produce a STAP 
weight vector that is robust to errors caused by 
effects such as internal clutter motion and antenna 
pattern mismatch. 

 
 

 
Figure 11  Tracker performance summary for 
standard STAP (left) vs. KASTAP (right) 
processing    

The algorithm was applied to the KASSPER 
Data Set using a reduced degree of freedom, post-
Doppler STAP framework.  The effects of strong 
discretes and targets were suppressed from the 
covariance estimates in each Doppler filter.  
Performance was characterized in terms of SINR 
loss, target detections and false alarm locations, 
ROC curves, and track life.  The results all show a 
significant benefit to employing knowledge aided 
STAP processing using past CPI reflectivity maps.  
Additional evaluations and refinements to produce 
further improvements in STAP performance are 
currently under investigation. 

 

APPENDIX A 
We give here the solution to Eqs. (2) for the 

position of a ground scatterer.  We first define three 
orthonormal unit vectors as follows: 
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 (A.1) 

 
Recall that pV

r
 is the radar platform velocity 

vector and prr  is the position of the platform relative 
to the center of the earth.  Next, we expand the 
scatterer position relative to the platform as 

 
)ˆˆˆ( 21 ucubuaRrr vspsc ⋅+⋅+⋅⋅=−

rr  (A.2) 
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The first of Eqs. (2) becomes 
 

1

)(||
222

222222

=++⇒

=++⋅=−

cba

RcbaRrr sspsc
rr

 (A.3) 

 
Next the expansion (A,2) is substituted into the 
second of Eqs. (2) to yield 
 

c
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⋅⋅=
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rrr

 (A.4) 

 
Substituting Eq. (A.4) into Eq. (A.3) yields 
 

cccb θθ 2222 sincos1 =−=+  (A.5) 
 
This allows us to define a polar angle β  such that 
 

βθ
βθ

sinsin
cossin

⋅=
⋅=

c

c

c
b

 (A.6) 

 
We next rewrite the magnitude squared of the 
scatterer position vector as follows 
 

22

22

||)(2||

||||

pscpscpp

pscpsc

rrrrrr

rrrr
rrrrrr

rrrr

−+−•⋅+=

−+=
 (A.7) 

 
Substituting the expansion (A.2) into Eq. (A.7) and 
using Eqs. (A.4) and (A.6) yields 
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 (A.8) 

We next use the fact that, from Eq. (A.1), 
0ˆ1 =• urp

r  to give 
 

2
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ˆ(cos2||||
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Rur

urRrr
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Substituting this result into the third of Eqs. (2) 
gives 
 

2
2

22
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ˆ(cos2||)(

spc

vpcspe

Rur

urRrhR

+•⋅⋅+
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which can be solved for βsin : 
 

2
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 (A.11) 
 
There will generally be two different solutions for 
β  giving the same value of βsin : 
 

)arcsin(sin),arcsin(sin βπββ −=  (A.12) 
 
The solution selected was the one that produced a 
scatterer position that was closest to the antenna 
pre-steering look direction.  From Eqs. (A.2), (A.4), 
(A.6), and (A.12), the scatterer position vector is 
then finally given by 
 

)}ˆsinˆ(cossin

ˆ{cos

21 uu

uRrr

c

vcspsc

⋅+⋅⋅+

⋅⋅+=

ββθ

θrr

 

APPENDIX B 
We specify here the form of the steering vector to 

a ground scatterer with known position vector scrr .  
The steering vector is specified by spatial and 
temporal responses.  The spatial response of a 
scatterer is defined by an N by 1 spatial steering 
vector (N is the number of antenna elements). 
Assuming the far-field approximation and identical 
antenna element patterns, the spatial steering vector 
elements are given by 

 

Nnerjq scnn ,...2,1    ),2exp(][ =•= )rr

λ
π  (B.1) 
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Here, nr
r is the position vector to the nth antenna 

element and sce) a unit vector from the platform to 
the ground scatterer.  This unit vector is given in 
terms of the azimuth and elevation angles of the 
scatterer 
   

UpNorth

Eastsc

eeleazel
eazele

))

))

⋅+⋅⋅
+⋅⋅=

)sin()cos()cos(
)sin()cos(

 (B.2) 

 
Here, UpNorthEast eee ))) ,,  are unit vectors pointing east, 
north, and up respectively at the location of the 
radar platform.  The azimuth angles were 
determined by converting the scatterer position 
relative to the platform ( psc rr rr

− ) from earth-
centered to platform-centered east-north-up 
coordinates.  Due to atmospheric refraction, 
however, the elevation angles computed in this 
manner do not accurately give the actual elevation 
angle of the radar return.  Thus, the elevation angles 
were re-computed for an effective earth model 
using the following equation: 
 

)(2
})(2{

)sin(
222

pes

sppe

hkRR
RhhhhkR

el
+⋅⋅

−−+−⋅⋅
=  (B.3) 

 
 
Here, ph  is the height of the radar platform above 
the spherical earth, and ee RkR ⋅= )3/4(  is the  
effective earth radius, which accounts for 
atmospheric refraction near the earth’s surface.   

 Letting M be the number of pulses, the 
temporal response of a scatterer will be represented 
by an M by 1 column vector.  The temporal steering 
vector elements will be given by 
 

Mm

mTfjt Dopm

,...2,1

    )],1(2exp[][

=

−⋅⋅⋅= π
r

, (B.4) 

 
where dopf  is the Doppler frequency of the scatterer, 
T is the pulse repetition interval, and m the pulse 
index within the CPI.   

The total space-time steering vector to a given 
scatterer will be a NM by 1 column vector which is 
the direct product of the spatial and temporal 

steering vectors.  The elements of the steering 
vector are then written as 
 

   ,][][][ mnnm tqs
rrr

⋅=  
 
or more succinctly, 
 

tq
rrv ⊗=s  (B.5) 

 
This form was used for the steering vectors isr  to 
each ground scatterer appearing in Eqs. (3)-(6) and 
Eq. (9). 
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